Paper ID: 2308.01271
A Probabilistic Approach to Self-Supervised Learning using Cyclical Stochastic Gradient MCMC
Masoumeh Javanbakhat, Christoph Lippert
In this paper we present a practical Bayesian self-supervised learning method with Cyclical Stochastic Gradient Hamiltonian Monte Carlo (cSGHMC). Within this framework, we place a prior over the parameters of a self-supervised learning model and use cSGHMC to approximate the high dimensional and multimodal posterior distribution over the embeddings. By exploring an expressive posterior over the embeddings, Bayesian self-supervised learning produces interpretable and diverse representations. Marginalizing over these representations yields a significant gain in performance, calibration and out-of-distribution detection on a variety of downstream classification tasks. We provide experimental results on multiple classification tasks on four challenging datasets. Moreover, we demonstrate the effectiveness of the proposed method in out-of-distribution detection using the SVHN and CIFAR-10 datasets.
Submitted: Aug 2, 2023