Paper ID: 2308.03259

Optimal Approximation and Learning Rates for Deep Convolutional Neural Networks

Shao-Bo Lin

This paper focuses on approximation and learning performance analysis for deep convolutional neural networks with zero-padding and max-pooling. We prove that, to approximate $r$-smooth function, the approximation rates of deep convolutional neural networks with depth $L$ are of order $ (L^2/\log L)^{-2r/d} $, which is optimal up to a logarithmic factor. Furthermore, we deduce almost optimal learning rates for implementing empirical risk minimization over deep convolutional neural networks.

Submitted: Aug 7, 2023