Paper ID: 2308.05170
FPGA Resource-aware Structured Pruning for Real-Time Neural Networks
Benjamin Ramhorst, Vladimir Loncar, George A. Constantinides
Neural networks achieve state-of-the-art performance in image classification, speech recognition, scientific analysis and many more application areas. Due to the high computational complexity and memory footprint of neural networks, various compression techniques, such as pruning and quantization, have been proposed in literature. Pruning sparsifies a neural network, reducing the number of multiplications and memory. However, pruning often fails to capture properties of the underlying hardware, causing unstructured sparsity and load-balance inefficiency, thus bottlenecking resource improvements. We propose a hardware-centric formulation of pruning, by formulating it as a knapsack problem with resource-aware tensor structures. Evaluated on a range of tasks, including sub-microsecond particle classification at CERN's Large Hadron Collider and fast image classification, the proposed method achieves reductions ranging between 55% and 92% in the DSP utilization and up to 81% in BRAM utilization.
Submitted: Aug 9, 2023