Paper ID: 2308.05665
Exploring Deep Learning Approaches to Predict Person and Vehicle Trips: An Analysis of NHTS Data
Kojo Adu-Gyamfi, Sharma Anuj
Modern transportation planning relies heavily on accurate predictions of person and vehicle trips. However, traditional planning models often fail to account for the intricacies and dynamics of travel behavior, leading to less-than-optimal accuracy in these predictions. This study explores the potential of deep learning techniques to transform the way we approach trip predictions, and ultimately, transportation planning. Utilizing a comprehensive dataset from the National Household Travel Survey (NHTS), we developed and trained a deep learning model for predicting person and vehicle trips. The proposed model leverages the vast amount of information in the NHTS data, capturing complex, non-linear relationships that were previously overlooked by traditional models. As a result, our deep learning model achieved an impressive accuracy of 98% for person trip prediction and 96% for vehicle trip estimation. This represents a significant improvement over the performances of traditional transportation planning models, thereby demonstrating the power of deep learning in this domain. The implications of this study extend beyond just more accurate predictions. By enhancing the accuracy and reliability of trip prediction models, planners can formulate more effective, data-driven transportation policies, infrastructure, and services. As such, our research underscores the need for the transportation planning field to embrace advanced techniques like deep learning. The detailed methodology, along with a thorough discussion of the results and their implications, are presented in the subsequent sections of this paper.
Submitted: Aug 10, 2023