Paper ID: 2308.06451
Semantic Equivariant Mixup
Zongbo Han, Tianchi Xie, Bingzhe Wu, Qinghua Hu, Changqing Zhang
Mixup is a well-established data augmentation technique, which can extend the training distribution and regularize the neural networks by creating ''mixed'' samples based on the label-equivariance assumption, i.e., a proportional mixup of the input data results in the corresponding labels being mixed in the same proportion. However, previous mixup variants may fail to exploit the label-independent information in mixed samples during training, which usually contains richer semantic information. To further release the power of mixup, we first improve the previous label-equivariance assumption by the semantic-equivariance assumption, which states that the proportional mixup of the input data should lead to the corresponding representation being mixed in the same proportion. Then a generic mixup regularization at the representation level is proposed, which can further regularize the model with the semantic information in mixed samples. At a high level, the proposed semantic equivariant mixup (sem) encourages the structure of the input data to be preserved in the representation space, i.e., the change of input will result in the obtained representation information changing in the same way. Different from previous mixup variants, which tend to over-focus on the label-related information, the proposed method aims to preserve richer semantic information in the input with semantic-equivariance assumption, thereby improving the robustness of the model against distribution shifts. We conduct extensive empirical studies and qualitative analyzes to demonstrate the effectiveness of our proposed method. The code of the manuscript is in the supplement.
Submitted: Aug 12, 2023