Paper ID: 2308.06998
Mutual Information-driven Triple Interaction Network for Efficient Image Dehazing
Hao Shen, Zhong-Qiu Zhao, Yulun Zhang, Zhao Zhang
Multi-stage architectures have exhibited efficacy in image dehazing, which usually decomposes a challenging task into multiple more tractable sub-tasks and progressively estimates latent hazy-free images. Despite the remarkable progress, existing methods still suffer from the following shortcomings: (1) limited exploration of frequency domain information; (2) insufficient information interaction; (3) severe feature redundancy. To remedy these issues, we propose a novel Mutual Information-driven Triple interaction Network (MITNet) based on spatial-frequency dual domain information and two-stage architecture. To be specific, the first stage, named amplitude-guided haze removal, aims to recover the amplitude spectrum of the hazy images for haze removal. And the second stage, named phase-guided structure refined, devotes to learning the transformation and refinement of the phase spectrum. To facilitate the information exchange between two stages, an Adaptive Triple Interaction Module (ATIM) is developed to simultaneously aggregate cross-domain, cross-scale, and cross-stage features, where the fused features are further used to generate content-adaptive dynamic filters so that applying them to enhance global context representation. In addition, we impose the mutual information minimization constraint on paired scale encoder and decoder features from both stages. Such an operation can effectively reduce information redundancy and enhance cross-stage feature complementarity. Extensive experiments on multiple public datasets exhibit that our MITNet performs superior performance with lower model complexity.The code and models are available at https://github.com/it-hao/MITNet.
Submitted: Aug 14, 2023