Paper ID: 2308.09073

mCL-NER: Cross-Lingual Named Entity Recognition via Multi-view Contrastive Learning

Ying Mo, Jian Yang, Jiahao Liu, Qifan Wang, Ruoyu Chen, Jingang Wang, Zhoujun Li

Cross-lingual named entity recognition (CrossNER) faces challenges stemming from uneven performance due to the scarcity of multilingual corpora, especially for non-English data. While prior efforts mainly focus on data-driven transfer methods, a significant aspect that has not been fully explored is aligning both semantic and token-level representations across diverse languages. In this paper, we propose Multi-view Contrastive Learning for Cross-lingual Named Entity Recognition (mCL-NER). Specifically, we reframe the CrossNER task into a problem of recognizing relationships between pairs of tokens. This approach taps into the inherent contextual nuances of token-to-token connections within entities, allowing us to align representations across different languages. A multi-view contrastive learning framework is introduced to encompass semantic contrasts between source, codeswitched, and target sentences, as well as contrasts among token-to-token relations. By enforcing agreement within both semantic and relational spaces, we minimize the gap between source sentences and their counterparts of both codeswitched and target sentences. This alignment extends to the relationships between diverse tokens, enhancing the projection of entities across languages. We further augment CrossNER by combining self-training with labeled source data and unlabeled target data. Our experiments on the XTREME benchmark, spanning 40 languages, demonstrate the superiority of mCL-NER over prior data-driven and model-based approaches. It achieves a substantial increase of nearly +2.0 $F_1$ scores across a broad spectrum and establishes itself as the new state-of-the-art performer.

Submitted: Aug 17, 2023