Paper ID: 2308.09568
PUMGPT: A Large Vision-Language Model for Product Understanding
Wei Xue, Zongyi Guo, Baoliang Cui, Zheng Xing, Xiaoyi Zeng, Xiufei Wang, Shuhui Wu, Weiming Lu
E-commerce platforms benefit from accurate product understanding to enhance user experience and operational efficiency. Traditional methods often focus on isolated tasks such as attribute extraction or categorization, posing adaptability issues to evolving tasks and leading to usability challenges with noisy data from the internet. Current Large Vision Language Models (LVLMs) lack domain-specific fine-tuning, thus falling short in precision and instruction following. To address these issues, we introduce PumGPT, the first e-commerce specialized LVLM designed for multi-modal product understanding tasks. We collected and curated a dataset of over one million products from AliExpress, filtering out non-inferable attributes using a universal hallucination detection framework, resulting in 663k high-quality data samples. PumGPT focuses on five essential tasks aimed at enhancing workflows for e-commerce platforms and retailers. We also introduce PumBench, a benchmark to evaluate product understanding across LVLMs. Our experiments show that PumGPT outperforms five other open-source LVLMs and GPT-4V in product understanding tasks. We also conduct extensive analytical experiments to delve deeply into the superiority of PumGPT, demonstrating the necessity for a specialized model in the e-commerce domain.
Submitted: Aug 18, 2023