Paper ID: 2308.09678
PoSynDA: Multi-Hypothesis Pose Synthesis Domain Adaptation for Robust 3D Human Pose Estimation
Hanbing Liu, Jun-Yan He, Zhi-Qi Cheng, Wangmeng Xiang, Qize Yang, Wenhao Chai, Gaoang Wang, Xu Bao, Bin Luo, Yifeng Geng, Xuansong Xie
Existing 3D human pose estimators face challenges in adapting to new datasets due to the lack of 2D-3D pose pairs in training sets. To overcome this issue, we propose \textit{Multi-Hypothesis \textbf{P}ose \textbf{Syn}thesis \textbf{D}omain \textbf{A}daptation} (\textbf{PoSynDA}) framework to bridge this data disparity gap in target domain. Typically, PoSynDA uses a diffusion-inspired structure to simulate 3D pose distribution in the target domain. By incorporating a multi-hypothesis network, PoSynDA generates diverse pose hypotheses and aligns them with the target domain. To do this, it first utilizes target-specific source augmentation to obtain the target domain distribution data from the source domain by decoupling the scale and position parameters. The process is then further refined through the teacher-student paradigm and low-rank adaptation. With extensive comparison of benchmarks such as Human3.6M and MPI-INF-3DHP, PoSynDA demonstrates competitive performance, even comparable to the target-trained MixSTE model\cite{zhang2022mixste}. This work paves the way for the practical application of 3D human pose estimation in unseen domains. The code is available at https://github.com/hbing-l/PoSynDA.
Submitted: Aug 18, 2023