Paper ID: 2308.09897
Spatial-Temporal Alignment Network for Action Recognition
Jinhui Ye, Junwei Liang
This paper studies introducing viewpoint invariant feature representations in existing action recognition architecture. Despite significant progress in action recognition, efficiently handling geometric variations in large-scale datasets remains challenging. To tackle this problem, we propose a novel Spatial-Temporal Alignment Network (STAN), which explicitly learns geometric invariant representations for action recognition. Notably, the STAN model is light-weighted and generic, which could be plugged into existing action recognition models (e.g., MViTv2) with a low extra computational cost. We test our STAN model on widely-used datasets like UCF101 and HMDB51. The experimental results show that the STAN model can consistently improve the state-of-the-art models in action recognition tasks in trained-from-scratch settings.
Submitted: Aug 19, 2023