Paper ID: 2308.12290
Integer Factorisation, Fermat & Machine Learning on a Classical Computer
Sam Blake
In this paper we describe a deep learning--based probabilistic algorithm for integer factorisation. We use Lawrence's extension of Fermat's factorisation algorithm to reduce the integer factorisation problem to a binary classification problem. To address the classification problem, based on the ease of generating large pseudo--random primes, a corpus of training data, as large as needed, is synthetically generated. We will introduce the algorithm, summarise some experiments, analyse where these experiments fall short, and finally put out a call to others to reproduce, verify and see if this approach can be improved to a point where it becomes a practical, scalable factorisation algorithm.
Submitted: Jul 16, 2023