Paper ID: 2308.12312
Physics informed Neural Networks applied to the description of wave-particle resonance in kinetic simulations of fusion plasmas
Jai Kumar, David Zarzoso, Virginie Grandgirard, Jan Ebert, Stefan Kesselheim
The Vlasov-Poisson system is employed in its reduced form version (1D1V) as a test bed for the applicability of Physics Informed Neural Network (PINN) to the wave-particle resonance. Two examples are explored: the Landau damping and the bump-on-tail instability. PINN is first tested as a compression method for the solution of the Vlasov-Poisson system and compared to the standard neural networks. Second, the application of PINN to solving the Vlasov-Poisson system is also presented with the special emphasis on the integral part, which motivates the implementation of a PINN variant, called Integrable PINN (I-PINN), based on the automatic-differentiation to solve the partial differential equation and on the automatic-integration to solve the integral equation.
Submitted: Aug 23, 2023