Paper ID: 2308.13173
DISGO: Automatic End-to-End Evaluation for Scene Text OCR
Mei-Yuh Hwang, Yangyang Shi, Ankit Ramchandani, Guan Pang, Praveen Krishnan, Lucas Kabela, Frank Seide, Samyak Datta, Jun Liu
This paper discusses the challenges of optical character recognition (OCR) on natural scenes, which is harder than OCR on documents due to the wild content and various image backgrounds. We propose to uniformly use word error rates (WER) as a new measurement for evaluating scene-text OCR, both end-to-end (e2e) performance and individual system component performances. Particularly for the e2e metric, we name it DISGO WER as it considers Deletion, Insertion, Substitution, and Grouping/Ordering errors. Finally we propose to utilize the concept of super blocks to automatically compute BLEU scores for e2e OCR machine translation. The small SCUT public test set is used to demonstrate WER performance by a modularized OCR system.
Submitted: Aug 25, 2023