Paper ID: 2308.14030
Forensic Histopathological Recognition via a Context-Aware MIL Network Powered by Self-Supervised Contrastive Learning
Chen Shen, Jun Zhang, Xinggong Liang, Zeyi Hao, Kehan Li, Fan Wang, Zhenyuan Wang, Chunfeng Lian
Forensic pathology is critical in analyzing death manner and time from the microscopic aspect to assist in the establishment of reliable factual bases for criminal investigation. In practice, even the manual differentiation between different postmortem organ tissues is challenging and relies on expertise, considering that changes like putrefaction and autolysis could significantly change typical histopathological appearance. Developing AI-based computational pathology techniques to assist forensic pathologists is practically meaningful, which requires reliable discriminative representation learning to capture tissues' fine-grained postmortem patterns. To this end, we propose a framework called FPath, in which a dedicated self-supervised contrastive learning strategy and a context-aware multiple-instance learning (MIL) block are designed to learn discriminative representations from postmortem histopathological images acquired at varying magnification scales. Our self-supervised learning step leverages multiple complementary contrastive losses and regularization terms to train a double-tier backbone for fine-grained and informative patch/instance embedding. Thereafter, the context-aware MIL adaptively distills from the local instances a holistic bag/image-level representation for the recognition task. On a large-scale database of $19,607$ experimental rat postmortem images and $3,378$ real-world human decedent images, our FPath led to state-of-the-art accuracy and promising cross-domain generalization in recognizing seven different postmortem tissues. The source code will be released on \href{https://github.com/ladderlab-xjtu/forensic_pathology}{https://github.com/ladderlab-xjtu/forensic\_pathology}.
Submitted: Aug 27, 2023