Paper ID: 2308.15010

TransPrompt v2: A Transferable Prompting Framework for Cross-task Text Classification

Jianing Wang, Chengyu Wang, Cen Chen, Ming Gao, Jun Huang, Aoying Zhou

Text classification is one of the most imperative tasks in natural language processing (NLP). Recent advances with pre-trained language models (PLMs) have shown remarkable success on this task. However, the satisfying results obtained by PLMs heavily depend on the large amounts of task-specific labeled data, which may not be feasible in many application scenarios due to data access and privacy constraints. The recently-proposed prompt-based fine-tuning paradigm improves the performance of PLMs for few-shot text classification with task-specific templates. Yet, it is unclear how the prompting knowledge can be transferred across tasks, for the purpose of mutual reinforcement. We propose TransPrompt v2, a novel transferable prompting framework for few-shot learning across similar or distant text classification tasks. For learning across similar tasks, we employ a multi-task meta-knowledge acquisition (MMA) procedure to train a meta-learner that captures the cross-task transferable knowledge. For learning across distant tasks, we further inject the task type descriptions into the prompt, and capture the intra-type and inter-type prompt embeddings among multiple distant tasks. Additionally, two de-biasing techniques are further designed to make the trained meta-learner more task-agnostic and unbiased towards any tasks. After that, the meta-learner can be adapted to each specific task with better parameters initialization. Extensive experiments show that TransPrompt v2 outperforms single-task and cross-task strong baselines over multiple NLP tasks and datasets. We further show that the meta-learner can effectively improve the performance of PLMs on previously unseen tasks. In addition, TransPrompt v2 also outperforms strong fine-tuning baselines when learning with full training sets.

Submitted: Aug 29, 2023