Paper ID: 2308.15419

Characterizing Learning Curves During Language Model Pre-Training: Learning, Forgetting, and Stability

Tyler A. Chang, Zhuowen Tu, Benjamin K. Bergen

How do language models learn to make predictions during pre-training? To study this question, we extract learning curves from five autoregressive English language model pre-training runs, for 1M tokens in context. We observe that the language models generate short repetitive phrases before learning to generate longer and more coherent text. We quantify the final surprisal, within-run variability, age of acquisition, forgettability, and cross-run variability of learning curves for individual tokens in context. More frequent tokens reach lower final surprisals, exhibit less variability within and across pre-training runs, are learned earlier, and are less likely to be "forgotten" during pre-training. Higher n-gram probabilities further accentuate these effects. Independent of the target token, shorter and more frequent contexts correlate with marginally more stable and quickly acquired predictions. Effects of part-of-speech are also small, although nouns tend to be acquired later and less stably than verbs, adverbs, and adjectives. Our work contributes to a better understanding of language model pre-training dynamics and informs the deployment of stable language models in practice.

Submitted: Aug 29, 2023