Paper ID: 2308.15478

An Adaptive Tangent Feature Perspective of Neural Networks

Daniel LeJeune, Sina Alemohammad

In order to better understand feature learning in neural networks, we propose a framework for understanding linear models in tangent feature space where the features are allowed to be transformed during training. We consider linear transformations of features, resulting in a joint optimization over parameters and transformations with a bilinear interpolation constraint. We show that this optimization problem has an equivalent linearly constrained optimization with structured regularization that encourages approximately low rank solutions. Specializing to neural network structure, we gain insights into how the features and thus the kernel function change, providing additional nuance to the phenomenon of kernel alignment when the target function is poorly represented using tangent features. We verify our theoretical observations in the kernel alignment of real neural networks.

Submitted: Aug 29, 2023