Paper ID: 2308.15985
Vision-Based Traffic Accident Detection and Anticipation: A Survey
Jianwu Fang, iahuan Qiao, Jianru Xue, Zhengguo Li
Traffic accident detection and anticipation is an obstinate road safety problem and painstaking efforts have been devoted. With the rapid growth of video data, Vision-based Traffic Accident Detection and Anticipation (named Vision-TAD and Vision-TAA) become the last one-mile problem for safe driving and surveillance safety. However, the long-tailed, unbalanced, highly dynamic, complex, and uncertain properties of traffic accidents form the Out-of-Distribution (OOD) feature for Vision-TAD and Vision-TAA. Current AI development may focus on these OOD but important problems. What has been done for Vision-TAD and Vision-TAA? What direction we should focus on in the future for this problem? A comprehensive survey is important. We present the first survey on Vision-TAD in the deep learning era and the first-ever survey for Vision-TAA. The pros and cons of each research prototype are discussed in detail during the investigation. In addition, we also provide a critical review of 31 publicly available benchmarks and related evaluation metrics. Through this survey, we want to spawn new insights and open possible trends for Vision-TAD and Vision-TAA tasks.
Submitted: Aug 30, 2023