Paper ID: 2308.16599
Using machine learning to understand causal relationships between urban form and travel CO2 emissions across continents
Felix Wagner, Florian Nachtigall, Lukas Franken, Nikola Milojevic-Dupont, Rafael H. M. Pereira, Nicolas Koch, Jakob Runge, Marta Gonzalez, Felix Creutzig
Climate change mitigation in urban mobility requires policies reconfiguring urban form to increase accessibility and facilitate low-carbon modes of transport. However, current policy research has insufficiently assessed urban form effects on car travel at three levels: (1) Causality -- Can causality be established beyond theoretical and correlation-based analyses? (2) Generalizability -- Do relationships hold across different cities and world regions? (3) Context specificity -- How do relationships vary across neighborhoods of a city? Here, we address all three gaps via causal graph discovery and explainable machine learning to detect urban form effects on intra-city car travel, based on mobility data of six cities across three continents. We find significant causal effects of urban form on trip emissions and inter-feature effects, which had been neglected in previous work. Our results demonstrate that destination accessibility matters most overall, while low density and low connectivity also sharply increase CO$_2$ emissions. These general trends are similar across cities but we find idiosyncratic effects that can lead to substantially different recommendations. In more monocentric cities, we identify spatial corridors -- about 10--50 km from the city center -- where subcenter-oriented development is more relevant than increased access to the main center. Our work demonstrates a novel application of machine learning that enables new research addressing the needs of causality, generalizability, and contextual specificity for scaling evidence-based urban climate solutions.
Submitted: Aug 31, 2023