Paper ID: 2309.00245

City electric power consumption forecasting based on big data & neural network under smart grid background

Zhengxian Chen, Maowei Wang, Conghu Li

With the development of the electric power system, the smart grid has become an important part of the smart city. The rational transmission of electric energy and the guarantee of power supply of the smart grid are very important to smart cities, smart cities can provide better services through smart grids. Among them, predicting and judging city electric power consumption is closely related to electricity supply and regulation, the location of power plants, and the control of electricity transmission losses. Based on big data, this paper establishes a neural network and considers the influence of various nonlinear factors on city electric power consumption. A model is established to realize the prediction of power consumption. Based on the permutation importance test, an evaluation model of the influencing factors of city electric power consumption is constructed to obtain the core characteristic values of city electric power consumption prediction, which can provide an important reference for electric power related industry.

Submitted: Sep 1, 2023