Paper ID: 2309.00929

Timbre-reserved Adversarial Attack in Speaker Identification

Qing Wang, Jixun Yao, Li Zhang, Pengcheng Guo, Lei Xie

As a type of biometric identification, a speaker identification (SID) system is confronted with various kinds of attacks. The spoofing attacks typically imitate the timbre of the target speakers, while the adversarial attacks confuse the SID system by adding a well-designed adversarial perturbation to an arbitrary speech. Although the spoofing attack copies a similar timbre as the victim, it does not exploit the vulnerability of the SID model and may not make the SID system give the attacker's desired decision. As for the adversarial attack, despite the SID system can be led to a designated decision, it cannot meet the specified text or speaker timbre requirements for the specific attack scenarios. In this study, to make the attack in SID not only leverage the vulnerability of the SID model but also reserve the timbre of the target speaker, we propose a timbre-reserved adversarial attack in the speaker identification. We generate the timbre-reserved adversarial audios by adding an adversarial constraint during the different training stages of the voice conversion (VC) model. Specifically, the adversarial constraint is using the target speaker label to optimize the adversarial perturbation added to the VC model representations and is implemented by a speaker classifier joining in the VC model training. The adversarial constraint can help to control the VC model to generate the speaker-wised audio. Eventually, the inference of the VC model is the ideal adversarial fake audio, which is timbre-reserved and can fool the SID system.

Submitted: Sep 2, 2023