Paper ID: 2309.02609

Directionality-Aware Mixture Model Parallel Sampling for Efficient Linear Parameter Varying Dynamical System Learning

Sunan Sun, Haihui Gao, Tianyu Li, Nadia Figueroa

The Linear Parameter Varying Dynamical System (LPV-DS) is an effective approach that learns stable, time-invariant motion policies using statistical modeling and semi-definite optimization to encode complex motions for reactive robot control. Despite its strengths, the LPV-DS learning approach faces challenges in achieving a high model accuracy without compromising the computational efficiency. To address this, we introduce the Directionality-Aware Mixture Model (DAMM), a novel statistical model that applies the Riemannian metric on the n-sphere $\mathbb{S}^n$ to efficiently blend non-Euclidean directional data with $\mathbb{R}^m$ Euclidean states. Additionally, we develop a hybrid Markov chain Monte Carlo technique that combines Gibbs Sampling with Split/Merge Proposal, allowing for parallel computation to drastically speed up inference. Our extensive empirical tests demonstrate that LPV-DS integrated with DAMM achieves higher reproduction accuracy, better model efficiency, and near real-time/online learning compared to standard estimation methods on various datasets. Lastly, we demonstrate its suitability for incrementally learning multi-behavior policies in real-world robot experiments.

Submitted: Sep 5, 2023