Paper ID: 2309.03847

Mixtures of Gaussians are Privately Learnable with a Polynomial Number of Samples

Mohammad Afzali, Hassan Ashtiani, Christopher Liaw

We study the problem of estimating mixtures of Gaussians under the constraint of differential privacy (DP). Our main result is that $\text{poly}(k,d,1/\alpha,1/\varepsilon,\log(1/\delta))$ samples are sufficient to estimate a mixture of $k$ Gaussians in $\mathbb{R}^d$ up to total variation distance $\alpha$ while satisfying $(\varepsilon, \delta)$-DP. This is the first finite sample complexity upper bound for the problem that does not make any structural assumptions on the GMMs. To solve the problem, we devise a new framework which may be useful for other tasks. On a high level, we show that if a class of distributions (such as Gaussians) is (1) list decodable and (2) admits a "locally small'' cover (Bun et al., 2021) with respect to total variation distance, then the class of its mixtures is privately learnable. The proof circumvents a known barrier indicating that, unlike Gaussians, GMMs do not admit a locally small cover (Aden-Ali et al., 2021b).

Submitted: Sep 7, 2023