Paper ID: 2309.05607
Creating a Systematic ESG (Environmental Social Governance) Scoring System Using Social Network Analysis and Machine Learning for More Sustainable Company Practices
Aarav Patel, Peter Gloor
Environmental Social Governance (ESG) is a widely used metric that measures the sustainability of a company practices. Currently, ESG is determined using self-reported corporate filings, which allows companies to portray themselves in an artificially positive light. As a result, ESG evaluation is subjective and inconsistent across raters, giving executives mixed signals on what to improve. This project aims to create a data-driven ESG evaluation system that can provide better guidance and more systemized scores by incorporating social sentiment. Social sentiment allows for more balanced perspectives which directly highlight public opinion, helping companies create more focused and impactful initiatives. To build this, Python web scrapers were developed to collect data from Wikipedia, Twitter, LinkedIn, and Google News for the S&P 500 companies. Data was then cleaned and passed through NLP algorithms to obtain sentiment scores for ESG subcategories. Using these features, machine-learning algorithms were trained and calibrated to S&P Global ESG Ratings to test their predictive capabilities. The Random-Forest model was the strongest model with a mean absolute error of 13.4% and a correlation of 26.1% (p-value 0.0372), showing encouraging results. Overall, measuring ESG social sentiment across sub-categories can help executives focus efforts on areas people care about most. Furthermore, this data-driven methodology can provide ratings for companies without coverage, allowing more socially responsible firms to thrive.
Submitted: Sep 7, 2023