Paper ID: 2309.06622
On the Contraction Coefficient of the Schr\"odinger Bridge for Stochastic Linear Systems
Alexis M. H. Teter, Yongxin Chen, Abhishek Halder
Schr\"{o}dinger bridge is a stochastic optimal control problem to steer a given initial state density to another, subject to controlled diffusion and deadline constraints. A popular method to numerically solve the Schr\"{o}dinger bridge problems, in both classical and in the linear system settings, is via contractive fixed point recursions. These recursions can be seen as dynamic versions of the well-known Sinkhorn iterations, and under mild assumptions, they solve the so-called Schr\"{o}dinger systems with guaranteed linear convergence. In this work, we study a priori estimates for the contraction coefficients associated with the convergence of respective Schr\"{o}dinger systems. We provide new geometric and control-theoretic interpretations for the same. Building on these newfound interpretations, we point out the possibility of improved computation for the worst-case contraction coefficients of linear SBPs by preconditioning the endpoint support sets.
Submitted: Sep 12, 2023