Paper ID: 2309.09021
Pedestrian Trajectory Prediction Using Dynamics-based Deep Learning
Honghui Wang, Weiming Zhi, Gustavo Batista, Rohitash Chandra
Pedestrian trajectory prediction plays an important role in autonomous driving systems and robotics. Recent work utilizing prominent deep learning models for pedestrian motion prediction makes limited a priori assumptions about human movements, resulting in a lack of explainability and explicit constraints enforced on predicted trajectories. We present a dynamics-based deep learning framework with a novel asymptotically stable dynamical system integrated into a Transformer-based model. We use an asymptotically stable dynamical system to model human goal-targeted motion by enforcing the human walking trajectory, which converges to a predicted goal position, and to provide the Transformer model with prior knowledge and explainability. Our framework features the Transformer model that works with a goal estimator and dynamical system to learn features from pedestrian motion history. The results show that our framework outperforms prominent models using five benchmark human motion datasets.
Submitted: Sep 16, 2023