Paper ID: 2309.10393
Hierarchical Modeling of Spatial Cues via Spherical Harmonics for Multi-Channel Speech Enhancement
Jiahui Pan, Shulin He, Hui Zhang, Xueliang Zhang
Multi-channel speech enhancement utilizes spatial information from multiple microphones to extract the target speech. However, most existing methods do not explicitly model spatial cues, instead relying on implicit learning from multi-channel spectra. To better leverage spatial information, we propose explicitly incorporating spatial modeling by applying spherical harmonic transforms (SHT) to the multi-channel input. In detail, a hierarchical framework is introduced whereby lower order harmonics capturing broader spatial patterns are estimated first, then combined with higher orders to recursively predict finer spatial details. Experiments on TIMIT demonstrate the proposed method can effectively recover target spatial patterns and achieve improved performance over baseline models, using fewer parameters and computations. Explicitly modeling spatial information hierarchically enables more effective multi-channel speech enhancement.
Submitted: Sep 19, 2023