Paper ID: 2309.13470

HAVE-Net: Hallucinated Audio-Visual Embeddings for Few-Shot Classification with Unimodal Cues

Ankit Jha, Debabrata Pal, Mainak Singha, Naman Agarwal, Biplab Banerjee

Recognition of remote sensing (RS) or aerial images is currently of great interest, and advancements in deep learning algorithms added flavor to it in recent years. Occlusion, intra-class variance, lighting, etc., might arise while training neural networks using unimodal RS visual input. Even though joint training of audio-visual modalities improves classification performance in a low-data regime, it has yet to be thoroughly investigated in the RS domain. Here, we aim to solve a novel problem where both the audio and visual modalities are present during the meta-training of a few-shot learning (FSL) classifier; however, one of the modalities might be missing during the meta-testing stage. This problem formulation is pertinent in the RS domain, given the difficulties in data acquisition or sensor malfunctioning. To mitigate, we propose a novel few-shot generative framework, Hallucinated Audio-Visual Embeddings-Network (HAVE-Net), to meta-train cross-modal features from limited unimodal data. Precisely, these hallucinated features are meta-learned from base classes and used for few-shot classification on novel classes during the inference phase. The experimental results on the benchmark ADVANCE and AudioSetZSL datasets show that our hallucinated modality augmentation strategy for few-shot classification outperforms the classifier performance trained with the real multimodal information at least by 0.8-2%.

Submitted: Sep 23, 2023