Paper ID: 2309.15064
Simultaneously Learning Speaker's Direction and Head Orientation from Binaural Recordings
Harshvardhan Takawale, Nirupam Roy
Estimation of a speaker's direction and head orientation with binaural recordings can be a critical piece of information in many real-world applications with emerging `earable' devices, including smart headphones and AR/VR headsets. However, it requires predicting the mutual head orientations of both the speaker and the listener, which is challenging in practice. This paper presents a system for jointly predicting speaker-listener head orientations by leveraging inherent human voice directivity and listener's head-related transfer function (HRTF) as perceived by the ear-mounted microphones on the listener. We propose a convolution neural network model that, given binaural speech recording, can predict the orientation of both speaker and listener with respect to the line joining the two. The system builds on the core observation that the recordings from the left and right ears are differentially affected by the voice directivity as well as the HRTF. We also incorporate the fact that voice is more directional at higher frequencies compared to lower frequencies.
Submitted: Sep 26, 2023