Paper ID: 2309.15090
Single Biological Neurons as Temporally Precise Spatio-Temporal Pattern Recognizers
David Beniaguev
This PhD thesis is focused on the central idea that single neurons in the brain should be regarded as temporally precise and highly complex spatio-temporal pattern recognizers. This is opposed to the prevalent view of biological neurons as simple and mainly spatial pattern recognizers by most neuroscientists today. In this thesis, I will attempt to demonstrate that this is an important distinction, predominantly because the above-mentioned computational properties of single neurons have far-reaching implications with respect to the various brain circuits that neurons compose, and on how information is encoded by neuronal activity in the brain. Namely, that these particular "low-level" details at the single neuron level have substantial system-wide ramifications. In the introduction we will highlight the main components that comprise a neural microcircuit that can perform useful computations and illustrate the inter-dependence of these components from a system perspective. In chapter 1 we discuss the great complexity of the spatio-temporal input-output relationship of cortical neurons that are the result of morphological structure and biophysical properties of the neuron. In chapter 2 we demonstrate that single neurons can generate temporally precise output patterns in response to specific spatio-temporal input patterns with a very simple biologically plausible learning rule. In chapter 3, we use the differentiable deep network analog of a realistic cortical neuron as a tool to approximate the gradient of the output of the neuron with respect to its input and use this capability in an attempt to teach the neuron to perform nonlinear XOR operation. In chapter 4 we expand chapter 3 to describe extension of our ideas to neuronal networks composed of many realistic biological spiking neurons that represent either small microcircuits or entire brain regions.
Submitted: Sep 26, 2023