Paper ID: 2309.15955

Hybrid Volitional Control of a Robotic Transtibial Prosthesis using a Phase Variable Impedance Controller

Ryan R. Posh, Jonathan A. Tittle, David J. Kelly, James P. Schmiedeler, Patrick M. Wensing

For robotic transtibial prosthesis control, the global kinematics of the tibia can be used to monitor the progression of the gait cycle and command smooth and continuous actuation. In this work, these global tibia kinematics are used to define a phase variable impedance controller (PVIC), which is then implemented as the nonvolitional base controller within a hybrid volitional control framework (PVI-HVC). The gait progression estimation and biomechanic performance of one able-bodied individual walking on a robotic ankle prosthesis via a bypass adapter are compared for three control schemes: a passive benchmark controller, PVIC, and PVI-HVC. The different actuation of each controller had a direct effect on the global tibia kinematics, but the average deviation between the estimated and ground truth gait percentage were 1.6%, 1.8%, and 2.1%, respectively, for each controller. Both PVIC and PVI-HVC produced good agreement with able-bodied kinematic and kinetic references. As designed, PVI-HVC results were similar to those of PVIC when the user used low volitional intent, but yielded higher peak plantarflexion, peak torque, and peak power when the user commanded high volitional input in late stance. This additional torque and power also allowed the user to volitionally and continuously achieve activities beyond level walking, such as ascending ramps, avoiding obstacles, standing on tip-toes, and tapping the foot. In this way, PVI-HVC offers the kinetic and kinematic performance of the PVIC during level ground walking, along with the freedom to volitionally pursue alternative activities.

Submitted: Sep 27, 2023