Paper ID: 2309.16143
Generative Semi-supervised Learning with Meta-Optimized Synthetic Samples
Shin'ya Yamaguchi
Semi-supervised learning (SSL) is a promising approach for training deep classification models using labeled and unlabeled datasets. However, existing SSL methods rely on a large unlabeled dataset, which may not always be available in many real-world applications due to legal constraints (e.g., GDPR). In this paper, we investigate the research question: Can we train SSL models without real unlabeled datasets? Instead of using real unlabeled datasets, we propose an SSL method using synthetic datasets generated from generative foundation models trained on datasets containing millions of samples in diverse domains (e.g., ImageNet). Our main concepts are identifying synthetic samples that emulate unlabeled samples from generative foundation models and training classifiers using these synthetic samples. To achieve this, our method is formulated as an alternating optimization problem: (i) meta-learning of generative foundation models and (ii) SSL of classifiers using real labeled and synthetic unlabeled samples. For (i), we propose a meta-learning objective that optimizes latent variables to generate samples that resemble real labeled samples and minimize the validation loss. For (ii), we propose a simple unsupervised loss function that regularizes the feature extractors of classifiers to maximize the performance improvement obtained from synthetic samples. We confirm that our method outperforms baselines using generative foundation models on SSL. We also demonstrate that our methods outperform SSL using real unlabeled datasets in scenarios with extremely small amounts of labeled datasets. This suggests that synthetic samples have the potential to provide improvement gains more efficiently than real unlabeled data.
Submitted: Sep 28, 2023