Paper ID: 2309.16809

GraB-sampler: Optimal Permutation-based SGD Data Sampler for PyTorch

Guanghao Wei

The online Gradient Balancing (GraB) algorithm greedily choosing the examples ordering by solving the herding problem using per-sample gradients is proved to be the theoretically optimal solution that guarantees to outperform Random Reshuffling. However, there is currently no efficient implementation of GraB for the community to easily use it. This work presents an efficient Python library, $\textit{GraB-sampler}$, that allows the community to easily use GraB algorithms and proposes 5 variants of the GraB algorithm. The best performance result of the GraB-sampler reproduces the training loss and test accuracy results while only in the cost of 8.7% training time overhead and 0.85% peak GPU memory usage overhead.

Submitted: Sep 28, 2023