Paper ID: 2309.17083
SegRCDB: Semantic Segmentation via Formula-Driven Supervised Learning
Risa Shinoda, Ryo Hayamizu, Kodai Nakashima, Nakamasa Inoue, Rio Yokota, Hirokatsu Kataoka
Pre-training is a strong strategy for enhancing visual models to efficiently train them with a limited number of labeled images. In semantic segmentation, creating annotation masks requires an intensive amount of labor and time, and therefore, a large-scale pre-training dataset with semantic labels is quite difficult to construct. Moreover, what matters in semantic segmentation pre-training has not been fully investigated. In this paper, we propose the Segmentation Radial Contour DataBase (SegRCDB), which for the first time applies formula-driven supervised learning for semantic segmentation. SegRCDB enables pre-training for semantic segmentation without real images or any manual semantic labels. SegRCDB is based on insights about what is important in pre-training for semantic segmentation and allows efficient pre-training. Pre-training with SegRCDB achieved higher mIoU than the pre-training with COCO-Stuff for fine-tuning on ADE-20k and Cityscapes with the same number of training images. SegRCDB has a high potential to contribute to semantic segmentation pre-training and investigation by enabling the creation of large datasets without manual annotation. The SegRCDB dataset will be released under a license that allows research and commercial use. Code is available at: https://github.com/dahlian00/SegRCDB
Submitted: Sep 29, 2023