Paper ID: 2310.00347

Unlocking Bias Detection: Leveraging Transformer-Based Models for Content Analysis

Shaina Raza, Oluwanifemi Bamgbose, Veronica Chatrath, Shardul Ghuge, Yan Sidyakin, Abdullah Y Muaad

Bias detection in text is crucial for combating the spread of negative stereotypes, misinformation, and biased decision-making. Traditional language models frequently face challenges in generalizing beyond their training data and are typically designed for a single task, often focusing on bias detection at the sentence level. To address this, we present the Contextualized Bi-Directional Dual Transformer (CBDT) \textcolor{green}{\faLeaf} classifier. This model combines two complementary transformer networks: the Context Transformer and the Entity Transformer, with a focus on improving bias detection capabilities. We have prepared a dataset specifically for training these models to identify and locate biases in texts. Our evaluations across various datasets demonstrate CBDT \textcolor{green} effectiveness in distinguishing biased narratives from neutral ones and identifying specific biased terms. This work paves the way for applying the CBDT \textcolor{green} model in various linguistic and cultural contexts, enhancing its utility in bias detection efforts. We also make the annotated dataset available for research purposes.

Submitted: Sep 30, 2023