Paper ID: 2310.00510

Exploring Benchmarks for Self-Driving Labs using Color Matching

Tobias Ginsburg, Kyle Hippe, Ryan Lewis, Doga Ozgulbas, Aileen Cleary, Rory Butler, Casey Stone, Abraham Stroka, Ian Foster

Self Driving Labs (SDLs) that combine automation of experimental procedures with autonomous decision making are gaining popularity as a means of increasing the throughput of scientific workflows. The task of identifying quantities of supplied colored pigments that match a target color, the color matching problem, provides a simple and flexible SDL test case, as it requires experiment proposal, sample creation, and sample analysis, three common components in autonomous discovery applications. We present a robotic solution to the color matching problem that allows for fully autonomous execution of a color matching protocol. Our solution leverages the WEI science factory platform to enable portability across different robotic hardware, the use of alternative optimization methods for continuous refinement, and automated publication of results for experiment tracking and post-hoc analysis.

Submitted: Sep 30, 2023