Paper ID: 2310.01331

ChoiceMates: Supporting Unfamiliar Online Decision-Making with Multi-Agent Conversational Interactions

Jeongeon Park, Bryan Min, Xiaojuan Ma, Juho Kim

Unfamiliar decisions -- decisions where people lack adequate domain knowledge or expertise -- specifically increase the complexity and uncertainty of the process of searching for, understanding, and making decisions with online information. Through our formative study (n=14), we observed users' challenges in accessing diverse perspectives, identifying relevant information, and deciding the right moment to make the final decision. We present ChoiceMates, a system that enables conversations with a dynamic set of LLM-powered agents for a holistic domain understanding and efficient discovery and management of information to make decisions. Agents, as opinionated personas, flexibly join the conversation, not only providing responses but also conversing among themselves to elicit each agent's preferences. Our between-subjects study (n=36) comparing ChoiceMates to conventional web search and single-agent showed that ChoiceMates was more helpful in discovering, diving deeper, and managing information compared to Web with higher confidence. We also describe how participants utilized multi-agent conversations in their decision-making process.

Submitted: Oct 2, 2023