Paper ID: 2310.01424
Identifying and Mitigating Privacy Risks Stemming from Language Models: A Survey
Victoria Smith, Ali Shahin Shamsabadi, Carolyn Ashurst, Adrian Weller
Large Language Models (LLMs) have shown greatly enhanced performance in recent years, attributed to increased size and extensive training data. This advancement has led to widespread interest and adoption across industries and the public. However, training data memorization in Machine Learning models scales with model size, particularly concerning for LLMs. Memorized text sequences have the potential to be directly leaked from LLMs, posing a serious threat to data privacy. Various techniques have been developed to attack LLMs and extract their training data. As these models continue to grow, this issue becomes increasingly critical. To help researchers and policymakers understand the state of knowledge around privacy attacks and mitigations, including where more work is needed, we present the first SoK on data privacy for LLMs. We (i) identify a taxonomy of salient dimensions where attacks differ on LLMs, (ii) systematize existing attacks, using our taxonomy of dimensions to highlight key trends, (iii) survey existing mitigation strategies, highlighting their strengths and limitations, and (iv) identify key gaps, demonstrating open problems and areas for concern.
Submitted: Sep 27, 2023