Paper ID: 2310.02050
Tuning Large language model for End-to-end Speech Translation
Hao Zhang, Nianwen Si, Yaqi Chen, Wenlin Zhang, Xukui Yang, Dan Qu, Xiaolin Jiao
With the emergence of large language models (LLMs), multimodal models based on LLMs have demonstrated significant potential. Models such as LLaSM, X-LLM, and SpeechGPT exhibit an impressive ability to comprehend and generate human instructions. However, their performance often falters when faced with complex tasks like end-to-end speech translation (E2E-ST), a cross-language and cross-modal translation task. In comparison to single-modal models, multimodal models lag behind in these scenarios. This paper introduces LST, a Large multimodal model designed to excel at the E2E-ST task. LST consists of a speech frontend, an adapter, and a LLM backend. The training of LST consists of two stages: (1) Modality adjustment, where the adapter is tuned to align speech representation with text embedding space, and (2) Downstream task fine-tuning, where both the adapter and LLM model are trained to optimize performance on the E2EST task. Experimental results on the MuST-C speech translation benchmark demonstrate that LST-13B achieves BLEU scores of 30.39/41.55/35.33 on En-De/En-Fr/En-Es language pairs, surpassing previous models and establishing a new state-of-the-art. Additionally, we conduct an in-depth analysis of single-modal model selection and the impact of training strategies, which lays the foundation for future research. We will open up our code and models after review.
Submitted: Oct 3, 2023