Paper ID: 2310.02239
MiniGPT-5: Interleaved Vision-and-Language Generation via Generative Vokens
Kaizhi Zheng, Xuehai He, Xin Eric Wang
The effectiveness of Multimodal Large Language Models (MLLMs) demonstrates a profound capability in multimodal understanding. However, the simultaneous generation of images with coherent texts is still underdeveloped. Addressing this, we introduce a novel interleaved vision-and-language generation method, centered around the concept of ``generative vokens". These vokens serve as pivotal elements contributing to coherent image-text outputs. Our method is marked by a unique two-stage training strategy for description-free multimodal generation, which does not necessitate extensive descriptions of images. We integrate classifier-free guidance to enhance the alignment of generated images and texts, ensuring more seamless and contextually relevant multimodal interactions. Our model, MiniGPT-5, exhibits substantial improvement over the baseline models on multimodal generation datasets, including MMDialog and VIST. The human evaluation shows MiniGPT-5 is better than the baseline model on more than 56\% cases for multimodal generation, highlighting its efficacy across diverse benchmarks.
Submitted: Oct 3, 2023