Paper ID: 2310.04681
VoiceExtender: Short-utterance Text-independent Speaker Verification with Guided Diffusion Model
Yayun He, Zuheng Kang, Jianzong Wang, Junqing Peng, Jing Xiao
Speaker verification (SV) performance deteriorates as utterances become shorter. To this end, we propose a new architecture called VoiceExtender which provides a promising solution for improving SV performance when handling short-duration speech signals. We use two guided diffusion models, the built-in and the external speaker embedding (SE) guided diffusion model, both of which utilize a diffusion model-based sample generator that leverages SE guidance to augment the speech features based on a short utterance. Extensive experimental results on the VoxCeleb1 dataset show that our method outperforms the baseline, with relative improvements in equal error rate (EER) of 46.1%, 35.7%, 10.4%, and 5.7% for the short utterance conditions of 0.5, 1.0, 1.5, and 2.0 seconds, respectively.
Submitted: Oct 7, 2023