Paper ID: 2310.04884
Regret Analysis of Repeated Delegated Choice
MohammadTaghi Hajiaghayi, Mohammad Mahdavi, Keivan Rezaei, Suho Shin
We present a study on a repeated delegated choice problem, which is the first to consider an online learning variant of Kleinberg and Kleinberg, EC'18. In this model, a principal interacts repeatedly with an agent who possesses an exogenous set of solutions to search for efficient ones. Each solution can yield varying utility for both the principal and the agent, and the agent may propose a solution to maximize its own utility in a selfish manner. To mitigate this behavior, the principal announces an eligible set which screens out a certain set of solutions. The principal, however, does not have any information on the distribution of solutions in advance. Therefore, the principal dynamically announces various eligible sets to efficiently learn the distribution. The principal's objective is to minimize cumulative regret compared to the optimal eligible set in hindsight. We explore two dimensions of the problem setup, whether the agent behaves myopically or strategizes across the rounds, and whether the solutions yield deterministic or stochastic utility. Our analysis mainly characterizes some regimes under which the principal can recover the sublinear regret, thereby shedding light on the rise and fall of the repeated delegation procedure in various regimes.
Submitted: Oct 7, 2023