Paper ID: 2310.05093
Asymmetrically Decentralized Federated Learning
Qinglun Li, Miao Zhang, Nan Yin, Quanjun Yin, Li Shen
To address the communication burden and privacy concerns associated with the centralized server in Federated Learning (FL), Decentralized Federated Learning (DFL) has emerged, which discards the server with a peer-to-peer (P2P) communication framework. However, most existing DFL algorithms are based on symmetric topologies, such as ring and grid topologies, which can easily lead to deadlocks and are susceptible to the impact of network link quality in practice. To address these issues, this paper proposes the DFedSGPSM algorithm, which is based on asymmetric topologies and utilizes the Push-Sum protocol to effectively solve consensus optimization problems. To further improve algorithm performance and alleviate local heterogeneous overfitting in Federated Learning (FL), our algorithm combines the Sharpness Aware Minimization (SAM) optimizer and local momentum. The SAM optimizer employs gradient perturbations to generate locally flat models and searches for models with uniformly low loss values, mitigating local heterogeneous overfitting. The local momentum accelerates the optimization process of the SAM optimizer. Theoretical analysis proves that DFedSGPSM achieves a convergence rate of $\mathcal{O}(\frac{1}{\sqrt{T}})$ in a non-convex smooth setting under mild assumptions. This analysis also reveals that better topological connectivity achieves tighter upper bounds. Empirically, extensive experiments are conducted on the MNIST, CIFAR10, and CIFAR100 datasets, demonstrating the superior performance of our algorithm compared to state-of-the-art optimizers.
Submitted: Oct 8, 2023