Paper ID: 2310.05375

IPDreamer: Appearance-Controllable 3D Object Generation with Complex Image Prompts

Bohan Zeng, Shanglin Li, Yutang Feng, Ling Yang, Hong Li, Sicheng Gao, Jiaming Liu, Conghui He, Wentao Zhang, Jianzhuang Liu, Baochang Zhang, Shuicheng Yan

Recent advances in 3D generation have been remarkable, with methods such as DreamFusion leveraging large-scale text-to-image diffusion-based models to supervise 3D object generation. These methods enable the synthesis of detailed and photorealistic textured objects. However, the appearance of 3D objects produced by these text-to-3D models is unpredictable, and it is hard for the single-image-to-3D methods to deal with complex images, thus posing a challenge in generating appearance-controllable 3D objects. To achieve controllable complex 3D object synthesis, we propose IPDreamer, a novel approach that incorporates image prompt adaption to extract detailed and comprehensive appearance features from complex images, which are then utilized for 3D object generation. Our results demonstrate that IPDreamer effectively generates high-quality 3D objects that are consistent with both the provided text and the appearance of complex image prompts, demonstrating its promising capability in appearance-controllable 3D object generation. Our code is available at https://github.com/zengbohan0217/IPDreamer.

Submitted: Oct 9, 2023