Paper ID: 2310.05858
DSAC-T: Distributional Soft Actor-Critic with Three Refinements
Jingliang Duan, Wenxuan Wang, Liming Xiao, Jiaxin Gao, Shengbo Eben Li
Reinforcement learning (RL) has proven to be highly effective in tackling complex decision-making and control tasks. However, prevalent model-free RL methods often face severe performance degradation due to the well-known overestimation issue. In response to this problem, we recently introduced an off-policy RL algorithm, called distributional soft actor-critic (DSAC or DSAC-v1), which can effectively improve the value estimation accuracy by learning a continuous Gaussian value distribution. Nonetheless, standard DSAC has its own shortcomings, including occasionally unstable learning processes and the necessity for task-specific reward scaling, which may hinder its overall performance and adaptability in some special tasks. This paper further introduces three important refinements to standard DSAC in order to address these shortcomings. These refinements consist of expected value substituting, twin value distribution learning, and variance-based critic gradient adjusting. The modified RL algorithm is named as DSAC with three refinements (DSAC-T or DSAC-v2), and its performances are systematically evaluated on a diverse set of benchmark tasks. Without any task-specific hyperparameter tuning, DSAC-T surpasses or matches a lot of mainstream model-free RL algorithms, including SAC, TD3, DDPG, TRPO, and PPO, in all tested environments. Additionally, DSAC-T, unlike its standard version, ensures a highly stable learning process and delivers similar performance across varying reward scales.
Submitted: Oct 9, 2023