Paper ID: 2310.05920
SimPLR: A Simple and Plain Transformer for Scaling-Efficient Object Detection and Segmentation
Duy-Kien Nguyen, Martin R. Oswald, Cees G. M. Snoek
The ability to detect objects in images at varying scales has played a pivotal role in the design of modern object detectors. Despite considerable progress in removing hand-crafted components and simplifying the architecture with transformers, multi-scale feature maps and/or pyramid design remain a key factor for their empirical success. In this paper, we show that this reliance on either feature pyramids or an hierarchical backbone is unnecessary and a transformer-based detector with scale-aware attention enables the plain detector `SimPLR' whose backbone and detection head are both non-hierarchical and operate on single-scale features. We find through our experiments that SimPLR with scale-aware attention is plain and simple, yet competitive with multi-scale vision transformer alternatives. Compared to the multi-scale and single-scale state-of-the-art, our model scales much better with bigger capacity (self-supervised) models and more pre-training data, allowing us to report a consistently better accuracy and faster runtime for object detection, instance segmentation as well as panoptic segmentation. Code will be released.
Submitted: Oct 9, 2023