Paper ID: 2310.06289
Better and Simpler Lower Bounds for Differentially Private Statistical Estimation
Shyam Narayanan
We provide optimal lower bounds for two well-known parameter estimation (also known as statistical estimation) tasks in high dimensions with approximate differential privacy. First, we prove that for any $\alpha \le O(1)$, estimating the covariance of a Gaussian up to spectral error $\alpha$ requires $\tilde{\Omega}\left(\frac{d^{3/2}}{\alpha \varepsilon} + \frac{d}{\alpha^2}\right)$ samples, which is tight up to logarithmic factors. This result improves over previous work which established this for $\alpha \le O\left(\frac{1}{\sqrt{d}}\right)$, and is also simpler than previous work. Next, we prove that estimating the mean of a heavy-tailed distribution with bounded $k$th moments requires $\tilde{\Omega}\left(\frac{d}{\alpha^{k/(k-1)} \varepsilon} + \frac{d}{\alpha^2}\right)$ samples. Previous work for this problem was only able to establish this lower bound against pure differential privacy, or in the special case of $k = 2$. Our techniques follow the method of fingerprinting and are generally quite simple. Our lower bound for heavy-tailed estimation is based on a black-box reduction from privately estimating identity-covariance Gaussians. Our lower bound for covariance estimation utilizes a Bayesian approach to show that, under an Inverse Wishart prior distribution for the covariance matrix, no private estimator can be accurate even in expectation, without sufficiently many samples.
Submitted: Oct 10, 2023