Paper ID: 2310.06594
On the Evaluation and Refinement of Vision-Language Instruction Tuning Datasets
Ning Liao, Shaofeng Zhang, Renqiu Xia, Min Cao, Yu Qiao, Junchi Yan
There is an emerging line of research on multimodal instruction tuning, and a line of benchmarks has been proposed for evaluating these models recently. Instead of evaluating the models directly, in this paper, we try to evaluate the Vision-Language Instruction-Tuning (VLIT) datasets. Also, we seek the way of building a dataset for developing an all-powerful VLIT model, which we believe could also be of utility for establishing a grounded protocol for benchmarking VLIT models. For effective evaluation of VLIT datasets that remains an open question, we propose a tune-cross-evaluation paradigm: tuning on one dataset and evaluating on the others in turn. For each single tune-evaluation experiment set, we define the Meta Quality (MQ) as the mean score obtained by a set of caption metrics including BLEU, METEOR, and ROUGE-L to quantify the quality of a certain dataset or a sample. On this basis, to evaluate the comprehensiveness of a dataset, we develop the Dataset Quality (DQ) covering all tune-evaluation sets. To lay the foundation for building a comprehensive dataset and developing an all-powerful model for practical applications, we define the Sample Quality (SQ) to quantify the all-sided quality of each sample. Extensive experiments validate the rationality of the proposed evaluation paradigm. Based on the holistic evaluation, we build a new dataset, REVO-LION (REfining VisiOn-Language InstructiOn tuNing), by collecting samples with higher SQ from each dataset. Remarkably, even with only half of the complete data, the model trained on REVO-LION can achieve the performance comparable to simply adding all VLIT datasets up. Furthermore, REVO-LION not only facilitates the development of a powerful model but also incorporates an evaluation set, which is designed to serve as a convenient benchmark for future research in the field.
Submitted: Oct 10, 2023