Paper ID: 2310.06656
Assessing the Impact of a Supervised Classification Filter on Flow-based Hybrid Network Anomaly Detection
Dominik Macko, Patrik Goldschmidt, Peter Pištek, Daniela Chudá
Constant evolution and the emergence of new cyberattacks require the development of advanced techniques for defense. This paper aims to measure the impact of a supervised filter (classifier) in network anomaly detection. We perform our experiments by employing a hybrid anomaly detection approach in network flow data. For this purpose, we extended a state-of-the-art autoencoder-based anomaly detection method by prepending a binary classifier acting as a prefilter for the anomaly detector. The method was evaluated on the publicly available real-world dataset UGR'16. Our empirical results indicate that the hybrid approach does offer a higher detection rate of known attacks than a standalone anomaly detector while still retaining the ability to detect zero-day attacks. Employing a supervised binary prefilter has increased the AUC metric by over 11%, detecting 30% more attacks while keeping the number of false positives approximately the same.
Submitted: Oct 10, 2023