Paper ID: 2310.06840

Hyperdimensional Computing as a Rescue for Efficient Privacy-Preserving Machine Learning-as-a-Service

Jaewoo Park, Chenghao Quan, Hyungon Moon, Jongeun Lee

Machine learning models are often provisioned as a cloud-based service where the clients send their data to the service provider to obtain the result. This setting is commonplace due to the high value of the models, but it requires the clients to forfeit the privacy that the query data may contain. Homomorphic encryption (HE) is a promising technique to address this adversity. With HE, the service provider can take encrypted data as a query and run the model without decrypting it. The result remains encrypted, and only the client can decrypt it. All these benefits come at the cost of computational cost because HE turns simple floating-point arithmetic into the computation between long (degree over 1024) polynomials. Previous work has proposed to tailor deep neural networks for efficient computation over encrypted data, but already high computational cost is again amplified by HE, hindering performance improvement. In this paper we show hyperdimensional computing can be a rescue for privacy-preserving machine learning over encrypted data. We find that the advantage of hyperdimensional computing in performance is amplified when working with HE. This observation led us to design HE-HDC, a machine-learning inference system that uses hyperdimensional computing with HE. We carefully structure the machine learning service so that the server will perform only the HE-friendly computation. Moreover, we adapt the computation and HE parameters to expedite computation while preserving accuracy and security. Our experimental result based on real measurements shows that HE-HDC outperforms existing systems by 26~3000 times with comparable classification accuracy.

Submitted: Aug 17, 2023